RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2022 Volume 63, Number 6, Pages 1290–1307 (Mi smj7732)

This article is cited in 2 papers

New exact solutions of the diffusion equation with power nonlinearity

A. A. Kosov, È. I. Semenov

Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences, Irkutsk

Abstract: We consider the multidimensional nonlinear diffusion equation with a power coefficient. Using some multidimensional quadratic ansatz, we seek for generalized automodel solutions and find new exact solutions in elementary and special functions in case of various exponents. We distinguish the events that the solutions are radially symmetric or spatially anisotropic and exhibit a series of examples demonstrating the novelty of the solutions.

Keywords: nonlinear diffusion equation, exact solution, generalized automodel solution.

UDC: 517.946

MSC: 35R30

Received: 25.01.2022
Revised: 25.01.2022
Accepted: 15.04.2022

DOI: 10.33048/smzh.2022.63.610


 English version:
Siberian Mathematical Journal, 2022, 63:6, 1102–1116


© Steklov Math. Inst. of RAS, 2024