RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 2, Pages 292–311 (Mi smj7762)

Enveloping algebras and ideals of the niltriangular subalgebra of the Chevalley algebra

G. P. Egorycheva, V. M. Levchuka, G. S. Suleimanovab, N. D. Hodyunyaa

a Institute of Mathematics and Computer Science, Siberian Federal University, Krasnoyarsk
b Khakas Technical Institute

Abstract: A simple complex Lie algebra is characterized by a root system $\Phi$ and a Chevalley basis with the integer structure constants. The well-known arbitrariness of their choice for the niltriangular subalgebra $N\Phi(C)$ essentially affects the Lie-admissible algebra $R_\Phi$ (in the sense of Albert) over a field $K$ such that $R_\Phi^{(-)}\simeq N\Phi(K)$. We study the uniqueness of the (nonassociative) enveloping algebras $R_\Phi$ of classical types. The enumeration of ideals of the Lie algebras $N\Phi(K)$ and $R_\Phi$ for $K=GF(q)$ leads to the solution of some combinatorial problem listed in ACM SIGSAM Bulletin in 2001. The calculations of multiple combinatorial sums with $q$-binomial coefficient use the integral representation method of combinatorial sums (the coefficient method).

Keywords: Chevalley algebra, niltriangular subalgebra, enveloping algebra, $B_n^+$-matrix, standard ideal, integral representations of combinatorial sums, $q$-binomial coefficient.

UDC: 519.11+512.554.3

MSC: 35R30

Received: 16.04.2022
Revised: 03.10.2022
Accepted: 10.10.2022

DOI: 10.33048/smzh.2023.64.205


 English version:
Siberian Mathematical Journal, 2023, 64:2, 300–317

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025