RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 3, Pages 500–520 (Mi smj7777)

This article is cited in 1 paper

Necessary and sufficient conditions for the regularity of the Sylow $p$-subgroups of the Chevalley groups over ${\Bbb Z}_p$ and ${\Bbb Z}_{p^2}$

G. P. Egorychev, S. G. Kolesnikov, V. M. Leontiev

Siberian Federal University, Krasnoyarsk

Abstract: Let $G$ be an elementary Chevalley group of type $A_n$, $B_n$, $C_n$, and $D_n$ over a finite field of characteristic $p$ or the integer residue ring modulo $p^2$. We show that a Sylow $p$-subgroup $P$ of $G$ is regular if and only if the nilpotency length of $P$ is less than $p$. We introduce and study some series of the combinatorial objects related to the root systems and structure constants of simple complex Lie algebras.

Keywords: regular $p$-group, Sylow subgroup, Chevalley group.

UDC: 512.542.3

MSC: 35R30

Received: 09.08.2022
Revised: 12.12.2022
Accepted: 10.01.2023

DOI: 10.33048/smzh.2023.64.305



© Steklov Math. Inst. of RAS, 2025