RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 3, Pages 540–545 (Mi smj7779)

This article is cited in 4 papers

On the intermediate values of the box dimensions

A. V. Ivanov

Institute of Applied Mathematical Research of the Karelian Research Centre RAS, Petrozavodsk

Abstract: We address the following question: Is it true that, for every metric compactum $X$ of box dimension $\dim_BX=a\leq\infty$ and every two reals $\alpha$ and $\beta$ such that $0\leq\alpha\leq\beta\leq a$, there exists a closed subset in $X$ whose lower box dimension is $\alpha$ and whose upper box dimension is $\beta$? We give the positive answer for $\alpha=0$. In the general case, this result is final. We construct an example of a metric compactum whose box dimension is $1$ but every nonempty proper closed subset of the compactum has lower box dimension $0$.

Keywords: metric compactum, box dimension, intermediate values, counterexample.

UDC: 515.12

MSC: 35R30

Received: 16.01.2023
Revised: 03.02.2023
Accepted: 21.02.2023

DOI: 10.33048/smzh.2023.64.307


 English version:
Siberian Mathematical Journal, 2023, 64:3, 593–597


© Steklov Math. Inst. of RAS, 2025