RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 3, Pages 585–597 (Mi smj7783)

Finite groups with $\sigma$-abnormal schmidt subgroups

H. Lia, Ch. Wana, I. N. Safonovab, A. N. Skibac

a School of Science, Hainan University
b Belarusian State University, Minsk
c Gomel State University named after Francisk Skorina

Abstract: Let $G$ be a finite group and let $\sigma =\{\sigma_{i} \mid i\in I\}$ be a partition of the set of all primes $\Bbb{P}$. The group $G$ is $\sigma$-primary if $G$ is a $\sigma_{i}$-group for some $i\in I$; while $G$ is $\sigma$-nilpotent if $G$ is the direct product of $\sigma$-primary subgroups; and $G$ is a Schmidt group if $G$ is nonnilpotent but each proper subgroup in $G$ is nilpotent.
A subgroup $A$ of $G$ is ${\sigma}$-abnormal in $G$ if for all subgroups $K < H$ in $G$, where $A\leq K$, the quotient group $H/K_{H}$ is not $\sigma$-primary.
We describe the structure of finite groups whose every non-$\sigma$-nilpotent Schmidt subgroup is $\sigma$-abnormal.

Keywords: finite group, $\sigma$-soluble group, $\sigma$-nilpotent group, Schmidt group, $\sigma$-abnormal subgroup.

UDC: 512.542

MSC: 35R30

Received: 23.11.2022
Revised: 29.12.2022
Accepted: 10.01.2023

DOI: 10.33048/smzh.2023.64.311



© Steklov Math. Inst. of RAS, 2024