RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 4, Pages 773–785 (Mi smj7797)

On diagonal nonconstant right-symmetric algebras of matrix type $M_2(F)$

A. P. Pozhidaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We describe the right-symmetric algebras of matrix type $M_2(F)$ over a field $F$ of characteristic $0$ such that the left action of the orthogonal idempotents of $M_2(F)$ is diagonalizable, and the right-module part $W$ includes no constant bichains. We construct some wide class of nonassociative algebras $E_{\psi,\partial}(W,{\mathcal A})$, where $W$ is a subalgebra and a right module over an associative algebra ${\mathcal A}$. We give a criterion for these algebras to be right-symmetric. Assuming that $W{\mathcal A}=W$, we show that the algebras of this class are either simple or local. We exhibit some examples of simple right-symmetric algebras and right-symmetric algebras without nilpotent right ideals whose right-module part is not an irreducible module over $M_2(F)$.

Keywords: right-symmetric algebra, left-symmetric algebra, simple algebra, pre-Lie algebra.

UDC: 512.57

MSC: 35R30

Received: 28.05.2022
Revised: 13.04.2023
Accepted: 16.05.2023

DOI: 10.33048/smzh.2023.64.410



© Steklov Math. Inst. of RAS, 2024