RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 4, Pages 830–840 (Mi smj7801)

Embedding of the first nonconstructive ordinal into the Rogers semilattices of families of arithmetic sets

M. Kh. Faizrahmanov

Kazan (Volga Region) Federal University

Abstract: We prove that there is an embedding of a linear order isomorphic to the first nonconstructive ordinal over each but the top element of the Rogers semilattice of an arbitrary $\Sigma^0_n$-computable family ($n\geq 2$).

Keywords: numbering, Rogers semilattice, first nonconstructive ordinal.

UDC: 510.5

MSC: 35R30

Received: 13.09.2022
Revised: 13.09.2022
Accepted: 16.05.2023

DOI: 10.33048/smzh.2023.64.414



© Steklov Math. Inst. of RAS, 2024