RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 4, Pages 830–840 (Mi smj7801)

This article is cited in 1 paper

Embedding of the first nonconstructive ordinal into the Rogers semilattices of families of arithmetic sets

M. Kh. Faizrahmanov

Kazan (Volga Region) Federal University

Abstract: We prove that there is an embedding of a linear order isomorphic to the first nonconstructive ordinal over each but the top element of the Rogers semilattice of an arbitrary $\Sigma^0_n$-computable family ($n\geq 2$).

Keywords: numbering, Rogers semilattice, first nonconstructive ordinal.

UDC: 510.5

MSC: 35R30

Received: 13.09.2022
Revised: 13.09.2022
Accepted: 16.05.2023

DOI: 10.33048/smzh.2023.64.414


 English version:
Siberian Mathematical Journal, 2024, 64:4, 927–935


© Steklov Math. Inst. of RAS, 2025