RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 5, Pages 912–934 (Mi smj7805)

This article is cited in 4 papers

Continuity of the mappings with finite distortion of the Sobolev class $W^1_{\nu,\operatorname{loc}}$ on Carnot groups

S. K. Vodopyanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We prove the continuity of the mappings with finite distortion of the Sobolev class $W^1_{\nu,\operatorname{loc}}$ on Carnot groups and establish that these mappings are $\mathcal P$-differentiable almost everywhere and have the Luzin $\mathcal N$-property.

Keywords: mapping with finite and bounded distortion, quasiconformal analysis, Sobolev space, Carnot group.

UDC: 517.518.23+517.548.2

MSC: 35R30

Received: 12.05.2023
Revised: 12.05.2023
Accepted: 02.08.2023

DOI: 10.33048/smzh.2023.64.503



© Steklov Math. Inst. of RAS, 2025