RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2023 Volume 64, Number 6, Pages 1151–1159 (Mi smj7821)

This article is cited in 3 papers

Openness and discreteness of mappings of finite distortion on Carnot groups

S. G. Basalaev, S. K. Vodopyanov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We prove that a mapping of finite distortion $ f : \Omega \to\Bbb G$ in a domain $\Omega$ of an $H$-type Carnot group $\Bbb G$ is continuous, open, and discrete provided that the distortion function $K(x)$ of $f$ belongs to $L_{p,\operatorname{loc}}(\Omega)$ for some $p > \nu -1$. In fact, the proof is suitable for each Carnot group provided it has a $\nu$-harmonic function of the form $\log \rho$, where the homogeneous norm $\rho$ is $C^2$-smooth.

Keywords: mappings of finite distortion, discreteness, openness.

UDC: 517.518+517.548

MSC: 35R30

Received: 03.08.2023
Revised: 03.08.2023
Accepted: 25.09.2023

DOI: 10.33048/smzh.2023.64.604



© Steklov Math. Inst. of RAS, 2024