RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 1, Pages 92–114 (Mi smj7843)

This article is cited in 1 paper

A spectral criterion for power-law convergence rate in the ergodic theorem for ${\Bbb Z}^d$ and ${\Bbb R}^d$ actions

A. G. Kachurovskiia, I. V. Podvigina, V. E. Todikovab, A. J. Khakimbaevc

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State Technical University
c Novosibirsk State University, Mechanics and Mathematics Department

Abstract: We prove the equivalence of the power-law convergence rate in the $L_2$-norm of ergodic averages for ${\Bbb Z}^d$ and ${\Bbb R}^d$ actions and the same power-law estimate for the spectral measure of symmetric $d$-dimensional parallelepipeds: for the degrees that are roots of some special symmetric polynomial in $d$ variables. Particularly, all possible range of power-law rates is covered for $d=1$.

Keywords: convergence rates in ergodic theorems, symmetric polynomial.

UDC: 517.987

MSC: 35R30

Received: 28.06.2023
Revised: 28.06.2023
Accepted: 25.09.2023

DOI: 10.33048/smzh.2024.65.109



© Steklov Math. Inst. of RAS, 2024