RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 3, Pages 455–468 (Mi smj7866)

The trace and integrable commutators of the measurable operators affiliated to a semifinite von Neumann algebra

A. M. Bikchentaev

Institute of Physics, Kazan (Volga region) Federal University

Abstract: Assume that $\tau$ is a faithful normal semifinite trace on a von Neumann algebra ${\mathcal{M}}$, $I$ is the unit of $\mathcal{M}$, $S({\mathcal{M}},\tau )$ is the $*$-algebra of $\tau$-measurable operators, and $L_1({\mathcal{M}},\tau)$ is the Banach space of \hbox{$\tau$-integrable} operators. We present a new proof of the following generalization of Putnam's theorem (1951): No positive self-commutator $[A^*, A]$ with $A\in S({\mathcal{M}}, \tau )$ is invertible in ${\mathcal{M}}$. If $\tau$ is infinite then no positive self-commutator $[A^*, A]$ with $A\in S({\mathcal{M}}, \tau )$ can be of the form $\lambda I +K$, where $\lambda$ is a nonzero complex number and $K$ is a $\tau$-compact operator. Given $A, B \in S({\mathcal{M}}, \tau )$ with $[A, B]\in L_1({\mathcal{M}},\tau)$ we seek for the conditions that $\tau ([A, B])=0$. If $X\in S({\mathcal{M}}, \tau )$ and $Y=Y^3 \in {\mathcal{M}}$ with $[X, Y]\in L_1({\mathcal{M}},\tau)$ then $\tau ([X, Y])=0$. If $A^2=A\in S({\mathcal{M}},\tau)$ and $[A^*, A]\in L_1({\mathcal{M}},\tau)$ then $\tau ([A^*, A])=0$. If a partial isometry $U$ lies in ${\mathcal{M}}$ and $U^n=0$ for some integer $n\geq 2$ then $U^{n-1}$ is a commutator and $U^{n-1}\in L_1({\mathcal{M}},\tau)$ implies that $\tau (U^{n-1})=0$.

Keywords: Hilbert space, von Neumann algebra, normal trace, measurable operator, commutator, self-commutator, idempotent.

UDC: 517.983:517.986

MSC: 35R30

Received: 21.11.2023
Revised: 21.11.2023
Accepted: 25.01.2024

DOI: 10.33048/smzh.2024.65.303



© Steklov Math. Inst. of RAS, 2024