RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 3, Pages 517–523 (Mi smj7869)

On the quantization dimension of maximal linked systems

A. A. Ivanovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics

Abstract: We prove that for a compact metric space $X$ and for a nonnegative real $b$ not exceeding the lower box dimension of $X$, there exists a maximal linked system in $\lambda X$ with lower quantization dimension $b$ and support $X$. There also exists a maximal linked system in $\lambda X$ with support $X$ whose lower and upper quantization dimensions coincide respectively with the lower and upper box dimensions of $X$.

Keywords: box dimension, quantization dimension, superextension.

UDC: 515.12

MSC: 35R30

Received: 02.12.2023
Revised: 02.12.2023
Accepted: 25.01.2024

DOI: 10.33048/smzh.2024.65.306



© Steklov Math. Inst. of RAS, 2024