RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 3, Pages 596–600 (Mi smj7876)

An example of a relatively maximal nonpronormal subgroup of odd order in a finite simple group

X. Zhanga, L. Sua, D. O. Revinb

a School of Math. Stat., Hainan University, Haikou, P.R. China
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: We prove the existence of a triple $({\mathfrak X},G,H)$, where ${\mathfrak X}$ is a class of finite groups consisting of groups of odd order which is complete (i.e., closed under subgroups, homomorphic images, and extensions), $G$ is a finite simple group, $H$ is an ${\mathfrak X}$-maximal subgroup in $G$, and $H$ is not pronormal in $G$.

Keywords: complete class of groups, relatively maximal subgroup, pronormal subgroup, finite simple group.

UDC: 512.542

MSC: 35R30

Received: 06.12.2023
Revised: 06.12.2023
Accepted: 25.01.2024

DOI: 10.33048/smzh.2024.65.313



© Steklov Math. Inst. of RAS, 2024