RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 4, Pages 605–621 (Mi smj7877)

This article is cited in 1 paper

Semicontinuity under convergence of homeomorphisms in $L_{1, \mathrm{loc}}$ of the operator distortion function

S. K. Vodopyanov, D. A. Sboev

Novosibirsk State University

Abstract: Studying the convergence in $L_{1, \mathrm{loc}}$ of homeomorphisms of class ${\mathcal Q}_{q,p}$ to some limit mapping, under additional assumptions, we prove that the norm of the operator distortion function is lower semicontinuous. We estimate the operator distortion function for $q < p$.

Keywords: lower semicontinuity, homeomorphism of class ${\mathcal Q}_{q,p}$, Carnot group.

UDC: 517.518+517.548

MSC: 35R30

Received: 03.04.2024
Revised: 03.04.2024
Accepted: 20.06.2024

DOI: 10.33048/smzh.2024.65.401



© Steklov Math. Inst. of RAS, 2025