RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 4, Pages 622–635 (Mi smj7878)

Estimates for the convergence rate of a Fourier series in Laguerre–Sobolev polynomials

R. M. Gadzhimirzaev

Daghestan Federal Research Centre of the Russian Academy of Sciences, Makhachkala

Abstract: Considering the approximation of $f\in W^r_{L^2_w}$, with $w(x)=e^{-x}$, by the partial sums $S_{r,r+n}(f,x)$ of the Fourier series in a system of polynomials orthogonal in the sense of Sobolev and generated by a system of classical Laguerre polynomials, we obtain some estimates for the convergence rate of $S_{r,r+n}(f,x)$ to $f(x)$.

Keywords: Laguerre polynomial, Fourier series, approximation properties, Sobolev-type inner product.

UDC: 517.518.822

MSC: 35R30

Received: 01.03.2024
Revised: 02.04.2024
Accepted: 08.04.2024

DOI: 10.33048/smzh.2024.65.402



© Steklov Math. Inst. of RAS, 2024