RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 4, Pages 645–652 (Mi smj7880)

Finite groups with $g$-permutable normalizers of sylow subgroups

S. F. Kamornikova, V. N. Tyutyanovb, O. L. Shemetkovac

a Francisk Skorina Gomel State University
b Gomel Branch of International Institute of Labor and Social Relations
c Plekhanov Russian State University of Economics, Moscow

Abstract: Let $A$ and $B$ be subgroups in a finite group $G$. Then $A$ is (hereditarily) $G$-permutable with $B$ if $AB^x = B^xA$ for some $x \in G$ (for some $x \in \langle A,B\rangle $). A subgroup $A$ in $G$ is (hereditarily) $G$-permutable in $G$ if $A$ is (hereditarily) $G$-permutable with all subgroups in $G$. The article deals with the structure of $G$ such that the normalizers of Sylow subgroups are (hereditarily) $G$-permutable.

Keywords: finite subgroup, Sylow subgroup, normalizer of a Sylow subgroup, $G$-permutable subgroup, hereditary $G$-permutable subgroup, ${\Bbb P}$-subnormal subgroup.

UDC: 512.542

MSC: 35R30

Received: 04.01.2024
Revised: 27.04.2024
Accepted: 20.06.2024

DOI: 10.33048/smzh.2024.65.404


 English version:
Siberian Mathematical Journal, 2024, 65:4, 771–777


© Steklov Math. Inst. of RAS, 2025