RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 4, Pages 672–685 (Mi smj7882)

Finite groups with systems of generalized normal subgroups

A. -M. Liua, S. Wangab, V. G. Safonovcd, A. N. Skibae

a School of Mathematics and Statistics, Hainan University
b School of Mathematics, Tianjin University
c Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk
d Belarusian State University, Minsk
e Francisk Skaryna Gomel State University, Faculty of Mathematics

Abstract: Let $G$ be a finite group and let ${\mathscr L}_{sn}(G)$ be the lattice of all subnormal subgroups of $G$. Let $A$ and $N$ be subgroups of $G$ and let $1, G\in {\mathscr L}$ be a sublattice in ${\mathscr L}_{sn}(G)$; i.e., $B\cap C$, $\langle B, C \rangle \in {\mathscr L}$ for all $B, C \in \mathscr L$. Then: $A^{{\mathscr L}}$ is the $\mathscr L$-closure of $A$ in $G$; i.e., the intersection of all subgroups in $ {\mathscr L}$ which includes $A$ and $A_{\mathscr L}$ is the $\mathscr L$-core of $A$ in $G$, i.e., the subgroup in $A$ generated by all subgroups of $G$ belonging to $\mathscr L$. A subgroup $A$ is an $N$-${\mathscr L}$-subgroup in $G$ if either $A\in {\mathscr L}$ or $A_{{\mathscr L}} < A < A^{\mathscr L}$ and $N$ avoids each composition factor $H/K$ of $G$ between $A_{{\mathscr L}}$ and $ A^{\mathscr L}$; i.e., $N\cap H=N\cap K$. Using these notions, we give some new characterizations of soluble and supersoluble subgroups and generalize a few available results.

Keywords: finite group, soluble group, supersoluble group, $N$-subnormal subgroup, $N$-normal subgroup, $N$-$S$-permutable subgroup.

UDC: 512.542

MSC: 35R30

Received: 17.03.2024
Revised: 29.04.2024

DOI: 10.33048/smzh.2024.65.406



© Steklov Math. Inst. of RAS, 2024