RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 4, Pages 693–701 (Mi smj7884)

A multidimensional analog of the Conway circle

S. A. Malyugin

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: Conway established the following geometric fact: If the sides $AB$ and $AC$ of a triangle $ABC$ are prolonged beyond the point $A$ by the length of the opposite side $BC$ and the same is done with the vertices $B$ and $C$, then the so-constructed $6$ points lie on the sole circle whose center coincides with the center of the inscribed circle. V.A. Alexandrov found a spatial analog of the Conway circle. Namely, if in a tetrahedron $ABCD$ we mark three points on the prolongations of the edges $AB$, $AC$, and $AD$ beyond the vertex $A$ at distance from $A$ to the half-perimeter of the opposite face $BCD$ and then do the same with the remaining vertices $B$, $C$, and $D$ then the so-constructed $12$ points lie on the same sphere if and only if $ABCD$ is a frame tetrahedron. We address the multidimensional version of the fact for a simplex in the Euclidean space $E_n$.

Keywords: Conway circle, Conway sphere, frame tetrahedron, Euclidean space, triangle, tetrahedron, simplex.

UDC: 514.114

MSC: 35R30

Received: 16.01.2024
Revised: 17.04.2024
Accepted: 20.06.2024

DOI: 10.33048/smzh.2024.65.408



© Steklov Math. Inst. of RAS, 2024