RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 5, Pages 808–819 (Mi smj7893)

This article is cited in 1 paper

Group bijections commuting with inner automorphisms

A. N. Borodina, M. V. Neshchadimb, A. A. Simonovc

a Gorno-Altaisk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
c Novosibirsk State University

Abstract: Considering the bijections of an arbitrary group $G$ onto itself which commute with all inner automorphisms, we establish the general properties. In particular, the automorphisms constitute the group $B(G)$ that includes the group of central automorphisms. Also, we fully describe $B(D_n)$ for the dihedral groups $D_n$, with $n \in {\Bbb N} \cup \{ \infty \}$.

Keywords: group, bijection, automorphism, conjugacy class, inversion, wreath product, quandle.

UDC: 512.543.56

MSC: 35R30

Received: 02.05.2024
Revised: 05.06.2024
Accepted: 20.06.2024

DOI: 10.33048/smzh.2024.65.504


 English version:
Siberian Mathematical Journal, 2024, 65:5, 1015–1025


© Steklov Math. Inst. of RAS, 2025