RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2024 Volume 65, Number 6, Pages 1102–1114 (Mi smj7912)

On the formations of finite solvable groups with property ${\mathcal P}_{2}$

S. V. Balychev, A. F. Vasil'ev, V. I. Murashka

Francisk Skorina Gomel State University, Gomel, Belarus

Abstract: Given two classes ${\mathfrak F}$ and ${\mathfrak X}$ of finite groups, ${\mathfrak F}$ is said to have property ${\mathscr P}_{2}$ for ${\mathfrak X}$ whenever ${\mathfrak F}$ contains every ${\mathfrak X}$-group $G$ expressible as the product of some subgroups $A_{1}, A_{2}, \dots, A_{n}$ such that the groups $A_{i}A_{j}$ lie in ${\mathfrak F}$ for all $1\leq i<j\leq n$. This article describes all $Z$-saturated $s_F$-closed formations and Fischer formations of solvable groups with property ${\mathscr P}_2$. In particular, the set of all such formations coincides with the set of hereditary Shemetkov formations in the class ${\mathfrak S}$ of all finite solvable groups. We describe the hereditary saturated formations ${\mathfrak X}$ with every saturated subformation having property ${\mathscr P}_{2}$ for ${\mathfrak X}$.

Keywords: finite group, product of groups, formation with property ${\mathcal P}_{2}$, Shemetkov formation, Fischer formation, $Z$-saturated formation.

UDC: 512.542

MSC: 35R30

Received: 26.03.2024
Revised: 16.09.2024
Accepted: 23.10.2024

DOI: 10.33048/smzh.2024.65.604


 English version:
Siberian Mathematical Journal, 2024, 65:6, 1281–1291


© Steklov Math. Inst. of RAS, 2025