RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2025 Volume 66, Number 1, Pages 27–29 (Mi smj7925)

Structure of finite groups isospectral to the automorphism group of the second sporadic Janko group

A. Kh. Zhurtova, D. V. Lytkinabc, V. D. Mazurovdb

a Kabardino-Balkarian State University, Nalchik, Russia
b Siberian State University of Telecommunications and Informatics, Novosibirsk, Russia
c Siberian State University of Telecommunications and Information Sciences, Novosibirsk, Russia Sobolev Institute of Mathematics, Novosibirsk, Russia
d Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: We prove that every solvable chief factor of a finite group whose set of element orders coincides with that of the automorphism group of the second sporadic Janko group is a $2$-group of order $2^4$, $2^6$, or $2^{20}$.

Keywords: spectrum, automorphism group, Janko group.

UDC: 512.542

MSC: 35R30

Received: 29.08.2024
Revised: 20.11.2024
Accepted: 25.12.2024

DOI: 10.33048/smzh.2025.66.103


 English version:
Siberian Mathematical Journal, 2025, 66:1, 22–24


© Steklov Math. Inst. of RAS, 2025