RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2025 Volume 66, Number 1, Pages 30–35 (Mi smj7926)

Supplement to the Pontryagin–Schnirelmann theorem

A. V. Ivanov

Institute of Applied Mathematical Research of Karelian Research Center, Petrozavodsk, Russia

Abstract: The lower box dimension $\underline{\dim}_B$ of a metric compactum $(X,\rho)$ appeared originally in 1932 in the work of Pontryagin and Schnirelmann, who proved that $\underline{\dim}_BX$ is always greater than or equal to the topological dimension $\dim X$ and each metrizable compactum admits a metric with $\underline{\dim}_BX=\dim X$. The present article shows that, given an infinite metrizable compactum $X$ and a real $b$ satisfying $\dim X\leq b\leq\infty$, there exists a metric on $X$ compatible with the topology such that $\underline{\dim}_BX=b$.

Keywords: metric compactum, box dimension, Pontryagin–Schnirelmann theorem.

UDC: 515.12

MSC: 35R30

Received: 18.11.2024
Revised: 18.11.2024
Accepted: 25.12.2024

DOI: 10.33048/smzh.2025.66.104


 English version:
Siberian Mathematical Journal, 2025, 66:1, 25–30


© Steklov Math. Inst. of RAS, 2025