RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2025 Volume 66, Number 1, Pages 46–59 (Mi smj7928)

Analogs of recurrent Newton formulas for systems of transcendental equations

A. M. Kytmanov

Siberian Federal University, Krasnoyarsk, Russia

Abstract: We consider a general system of transcendental equations in the $n$-dimensional complex space $\Bbb C^n$ and introduce the concept of $\sigma$-power sum of the roots of a system $\sigma_\alpha$. Multidimensional residue theory yields the formulas that relate the $\sigma$-power sums of various orders to each other. We establish a connection between the $\sigma$-power sums and the power sums of the roots of the system.

Keywords: residue integral, recurrent Newton formula, system of transcendental equations, power sum of the roots, multidimensional residue.

UDC: 517.55

MSC: 35R30

Received: 07.09.2024
Revised: 07.09.2024
Accepted: 25.12.2024

DOI: 10.33048/smzh.2025.66.106


 English version:
Siberian Mathematical Journal, 2025, 66:1, 40–52


© Steklov Math. Inst. of RAS, 2025