RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2025 Volume 66, Number 3, Pages 363–377 (Mi smj7949)

Removable singularities for quasiregular mappings

V. V. Aseev

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: Given a continuous open finite-to-one mapping $f$ of a domain $G$ including a closed set $E$, for each natural $k$ we consider the set $E(k)$ (possibly empty) of all points in $E$ at which $f$ attains a value with multiplicity $k$ over $G$. Suppose that each point of $E(k)$ has a neighborhood where the restriction of $f$ to $E(k)$ is injective, and its inverse mapping is weakly $(h,H)$-quasisymmetric. If, moreover, $f$ is quasiregular outside $E$, then it is quasiregular on the entire domain $G$. This theorem generalizes the sufficient condition for the removability of closed sets in the class of quasiconformal mappings obtained by Väisälä in 1990.

Keywords: quasiconformal mapping, quasiregular mapping, weakly quasisymmetric mapping, continuous open discrete mapping, modulus of a path family, condenser capacity.

UDC: 517.54

MSC: 35R30

Received: 21.10.2024
Revised: 21.03.2025
Accepted: 25.04.2025

DOI: 10.33048/smzh.2025.66.303


 English version:
Siberian Mathematical Journal, 2025, 66:3, 629–640


© Steklov Math. Inst. of RAS, 2025