RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2025 Volume 66, Number 4, Pages 551–569 (Mi smj7962)

Calculation of $6j$-symbols for the Lie algebra $\mathfrak{gl}_n$

D. V. Artamonov

Lomonosov Moscow State University, Moscow, Russia

Abstract: We explicitly construct linear generators for the multiplicity space that describes the occurrences of an irreducible representation in the decomposition of the tensor product of two irreducible finite-dimensional representations of the Lie algebra of all matrices of a given size. This result is applied to derive an explicit formula for an arbitrary $6j$-symbol associated with finite-dimensional representations of the Lie algebra. The value of such a symbol is expressed in terms of a generalized hypergeometric function.

Keywords: tensor product, irrep decomposition, $6j$-symbols.

UDC: 512.815.1

MSC: 35R30

Received: 28.12.2023
Revised: 15.04.2025
Accepted: 25.04.2025

DOI: 10.33048/smzh.2025.66.401


 English version:
Siberian Mathematical Journal, 2025, 66:4, 875–890


© Steklov Math. Inst. of RAS, 2025