RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 1993 Volume 34, Number 6, Pages 86–90 (Mi smj812)

This article is cited in 2 papers

On stability of Möbius transformations in the class of mappings with bounded distortion

N. A. Kudryavtseva, Yu. G. Reshetnyak


Abstract: Let $f\colon B(0,1)\to\mathbb{R}^n$ be a mapping with bounded distortion, and $K(x,f)$ be the distortion coefficient of the mapping $f$ at the point $x$. It is proved that if the function $K(x,f)$ is close to 1 in some integral sense, then the mapping $f$ is close to a Möbius transformation.

UDC: 517.54

Received: 22.06.1990


 English version:
Siberian Mathematical Journal, 1993, 34:6, 1076–1080

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024