RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 1993 Volume 34, Number 6, Pages 153–157 (Mi smj818)

Minimal algebraic groups with finite center

K. N. Ponomarev


Abstract: An algebraic infinite $K$-group with finite center is called minimal if all its proper $K$-subgroups have infinite center. We prove that every nonsolvable minimal $K$-group is $K$-isomorphic to the special orthogonal group $SO_{3,f}$ or to the spinor group $Spin_{3,f}$ of a quadratic anisotropic $K$-form $f$ in three variables.

UDC: 512.623.27

Received: 19.01.1993


 English version:
Siberian Mathematical Journal, 1993, 34:6, 1138–1141

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024