RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2006 Volume 47, Number 5, Pages 1071–1075 (Mi smj912)

This article is cited in 4 papers

On the fractional parts of the natural powers of a fixed number

A. Dubickas

Vilnius University

Abstract: Let $\xi\ne0$ and $\alpha>1$ be reals. We prove that the fractional parts $\{\xi\alpha^n\}$, $n=12,3,\dots$, take every value only finitely many times except for the case when $\alpha$ is the root of an integer: $\alpha=q^{1/d}$, where $q\geqslant2$ and $d\geqslant1$ are integers and $\xi$ is a rational factor of a nonnegative integer power of $\alpha$.

Keywords: fractional part, algebraic integer, roots, power.

UDC: 511

Received: 04.09.2005


 English version:
Siberian Mathematical Journal, 2006, 47:5, 879–882

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024