RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2006 Volume 47, Number 5, Pages 1083–1091 (Mi smj914)

This article is cited in 7 papers

An analog of Sard's theorem for $C^1$-smooth functions of two variables

M. V. Korobkov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: The main result of the article is
Theorem 1. {\it Let $v\colon\Omega\to\mathbb R$ be a $C^1$-smooth function on a domain $\Omega\subset\mathbb R^2$. Suppose that $0\notin\operatorname{Cl}\operatorname{Int}D_v(\Omega)$. Then the measure of the image of the set of critical points equals zero.}

Keywords: $C^1$-smooth function, Sard theorem, interior point.

UDC: 517.2

Received: 15.12.2005


 English version:
Siberian Mathematical Journal, 2006, 47:5, 889–895

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024