RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2005 Volume 46, Number 1, Pages 130–138 (Mi smj945)

This article is cited in 11 papers

The space of Fourier–Haar multipliers

O. V. Lelonda, E. M. Semenovb, S. N. Uksusovb

a Togliatti State University
b Voronezh State University

Abstract: The Haar system constitutes an unconditional basis for a separable rearrangement invariant (symmetric) space $E$ if and only if the multiplier determined by the sequence $\lambda_{nk}=(-1)^n$, $k=0,1$, for $n=0$ and $k=0,1,\dots,2^n$ for $n\geqslant1$, is bounded in $E$. If the Lorentz space $\Lambda(\varphi)$ differs from $L_1$ and $L_\infty$ then there is a multiplier with respect to the Haar system which is bounded in $\Lambda(\varphi)$ and unbounded in $L_\infty$ and $L_1$.

Keywords: Haar system, rearrangement invariant space, Lorentz space, multiplier, unconditional basis.

UDC: 517.512

Received: 26.04.2004


 English version:
Siberian Mathematical Journal, 2005, 46:1, 103–110

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024