RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2005 Volume 46, Number 2, Pages 345–351 (Mi smj969)

This article is cited in 4 papers

Some properties of prime near-rings with $(\sigma,\tau)$-derivation

Ö. Gölbaşi

Cumhuriyet University

Abstract: Some results by Bell and Mason on commutativity in near-rings are generalized. Let $N$ be a prime right near-ring with multiplicative center $Z$ and let $D$ be a $(\sigma,\tau)$-derivation on $N$ such that $\sigma D=D\sigma$ and $\tau D=D\tau$. The following results are proved: (i) If $D(N)\subset Z$ or $[D(N),D(N)]=0$ or $[D(N),D(N)]_{\sigma,\tau}=0$ then $(N,+)$ is abelian; (ii) If $D(xy)=D(x)D(y)$ or $D(xy)=D(y)D(x)$ for all $x,y\in N$ then $D=0$.

Keywords: prime near-ring, derivation, $(\sigma,\tau)$-derivation.

UDC: 512.558

Received: 07.04.2003


 English version:
Siberian Mathematical Journal, 2005, 46:2, 270–275

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024