RUS  ENG
Full version
JOURNALS // Sibirskii Matematicheskii Zhurnal // Archive

Sibirsk. Mat. Zh., 2005 Volume 46, Number 3, Pages 663–672 (Mi smj995)

This article is cited in 1 paper

Subcubic growth of the averaged Dehn function for a class 2 nilpotent group

V. A. Roman'kov

Omsk State University

Abstract: We show that the averaged Dehn function with respect to each finite presentation of an arbitrary finitely generated class 2 nilpotent group is subcubic. For the finite rank $\geqslant2$ free class 2 nilpotent group this implies the subasymptoticity of the averaged Dehn function in the sense of M. Gromov, confirming his conjecture.

Keywords: nilpotent group, finitely presented group, Cayley graph, Dehn function, averaged Dehn function.

UDC: 512.54

Received: 11.10.2003
Revised: 25.03.2005


 English version:
Siberian Mathematical Journal, 2005, 46:3, 527–534

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024