RUS  ENG
Full version
JOURNALS // Mathematical notes of NEFU // Archive

Mathematical notes of NEFU, 2018 Volume 25, Issue 3, Pages 3–17 (Mi svfu223)

Mathematics

Linear inverse problems of spatial type for quasiparabolic equations

E. V. Akimovaa, A. I. Kozhanovb

a Novosibirsk State University,Pirogova Street, 1, Novosibirsk 630090, Russia
b Sobolev Institute of Mathematics, 4 Akad. Koptyug Avenue, Novosibirsk 630090, Russia

Abstract: We study solvability of the inverse problems for finding both the solution $u(x,t)$ and the coefficient $q(x)$ in the equation
$$ (-1)^{m+1}\frac{\partial^{2m+1}u}{\partial t^{2m+1}}+\Delta u+\mu u=f(x,t)+q(x)h(x,t), $$
where $x=(x_1,\dots, x_n)\in\Omega,$ $\Omega$ is a bounded domain in $\mathbb{R}^n,$ $t\in(0,T),$ $0<T<+\infty,$ $f(x,t)$ and $h(x, t)$ are given functions, $\mu$ is a given real, $m$ is a given natural, and $\Delta$ is necessary due to presence of the additional unknown function $q(x)$), the boundary overdetermination condition is used in the article (with $t=0$ or $t=T$).
For the problems under study, the existence and uniqueness theorems for regular solutions are proved (all derivatives are the Sobolev generalized derivatives).

Keywords: linear inverse problem, quasiparabolic equations, boundary overdetermination condition, regular solutions, existence, uniqueness.

UDC: 517.54

Received: 14.05.2018

DOI: 10.25587/SVFU.2018.99.16947



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025