RUS  ENG
Full version
JOURNALS // Mathematical notes of NEFU // Archive

Mathematical notes of NEFU, 2019 Volume 26, Issue 3, Pages 98–108 (Mi svfu264)

This article is cited in 1 paper

Mathematics

Boundary control for pseudoparabolic equations in space

Z. K. Fayazova

Department of Higher Mathematics, Tashkent State Technical University 2A Almazarskaya Street, Tashkent 100095, Uzbekistan

Abstract: Let $u(x,y,t)$ be a solution to the pseudoparabolic equation that satisfies the initial and boundary conditions. The value of the solution is given on the part of boundary of the considered region which contains the control parameter. It is required to choose the control parameter so that on a part of the regularity domain the solution takes the specified mean value. First, we consider an auxiliary boundary value problem for a pseudoparabolic equation. We prove the existence and uniqueness of the generalized solution from the corresponding class. The restriction for the admissible control is given in the integral form. By the separation variables method, the desired problem is reduced to the Volterra integral equation. The latter is solved by the Laplace transform method. The theorem on the existence of an admissible control is proved.

Keywords: pseudoparabolic equation, boundary control, admissible control, integral equation, Laplace transform.

UDC: 517.9

Received: 23.08.2019
Revised: 28.08.2019
Accepted: 03.09.2019

Language: English

DOI: 10.25587/SVFU.2019.20.57.008



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024