Abstract:
A numerical simulation of the temperature field dynamics with short contact of the roller heater with diamond grains moving in trench on the conveyor belt with a layer of a thermal adhesive is used to increase the performance of the heat adhesion screening and extraction of rough diamonds from the concentrate. For determining the width of the contact edge of the roller heater in the apparatus which ensures the fixing of diamonds of given dimension in the heat adhesive substance, we propose a calculation method based on the analysis of the temperature field dynamics in the “heating element-diamond-heat adhesive substance” system. It is believed that the diamond attachment is ensured by melting the heat adhesive substance to a certain depth during the thermal contact of the diamond with the heating roller. According to the proposed method, we calculate the widths of the contact edge of the heating rollers, which are necessary for the installation of effective extraction of diamonds from a mixture of related minerals in three streams on the conveyor belt. The technique can be used to reduce the amount of experimental research with further improvement of the installation and increase its productivity.