RUS  ENG
Full version
JOURNALS // Mathematical notes of NEFU // Archive

Mathematical notes of NEFU, 2016 Volume 23, Issue 3, Pages 70–80 (Mi svfu32)

Mathematics

On a non-standard conjugation problem for elliptic equations

A. I. Kozhanovab, S. V. Potapovac

a Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia;
b Novosibirsk State University, 2 Pirogov Street, 2, Novosibirsk 630090, Russia
c M. K. Ammosov Nord-Eastern Federal University, Research Institute of Mathematic, Kulakovskogo st., 48, Yakutsk 677000, Russia

Abstract: We investigate the regular solvability of the conjugation problem for elliptic equations with non-standard boundary conditions and sewing conditions on the plane $x = 0$. Let $Q$ be a parallelepiped. On the bottom of $Q$ we give a boundary condition for $u(x, t, a)$ in the part where $x>0$ and for $u_t(x, t, a)$ in the part where $x<0$. On the plane $x=0$ these conditions “intertwist”, so on the top of $Q$ we give a boundary condition for $u(x, t, a)$ in the part where $x<0$ and for $u_t(x, t, a)$ in the part where $x > 0$. Combining the regularization method and natural parameter continuation, we prove the uniqueness and existence theorems for regular solutions of this non-standard conjugation problem.

Keywords: conjugation problem, regular solution, sewing condition, elliptic equation, discontinuous boundary conditions.

UDC: 517.95

Received: 28.08.2016



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024