RUS  ENG
Full version
JOURNALS // Mathematical notes of NEFU // Archive

Mathematical notes of NEFU, 2021 Volume 28, Issue 3, Pages 19–30 (Mi svfu323)

Mathematics

Degeneration in differential equations with multiple characteristics

A. I. Kozhanovab, G. A. Lukinac

a Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
b Academy of Science of the Republic of Sakha (Yakutia), 33 Lenin Avenue, Yakutsk 677007, Russia
c Ammosov North-Eastern Federal University, Mirny Polytechnic Institute, 5/1 Tikhonov Street, Mirny 678175, Russia

Abstract: We study the solvability of boundary value problems for the differential equations
$$ \varphi(t)u_t+(-1)^m\psi(t)D^{2m+1}_{x}u+c(x,t)u=f(x,t),\\ \varphi(t)u_{tt}+(-1)^{m+1}\psi(t)D^{2m+1}_{x}u+c(x,t)u=f(x,t), $$
where $x\in(0,1)$, $t\in(0,T),$ $m$ is a non-negative integer, $D^k_x=\frac{\partial^k}{\partial x^k}$ ($D^1_x=D_x$), while the functions $\varphi(t)$ and $\psi(t)$ are non-negative and vanish at some points of the segment $[0,T]$. We prove the existence and uniqueness theorems for the regular solutions, those having all generalized Sobolev derivatives required in the equation, in the inner subdomains.

Keywords: differential equations with multiple characteristics, degeneration, boundary value problem, regular solution, existence, uniqueness.

UDC: 517.946

Received: 19.05.2021
Accepted: 26.08.2021

DOI: 10.25587/SVFU.2021.91.97.002



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024