RUS  ENG
Full version
JOURNALS // Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva // Archive

Zhurnal SVMO, 2013, Volume 15, Number 3, Pages 8–20 (Mi svmo393)

Degenerated differential equations with variable degeneration operator

B. V. Loginova, Yu. B. Rusakb, L. R. Kim-Tyanc

a Ulyanovsk State Technical University
b University of Canberra
c National University of Science and Technology «MISIS»

Abstract: The theory of Jordan chains for multiparameter operator-functions $A(\lambda):E_{1}\rightarrow E_{2}$, $\lambda\in\Lambda$, $\text{dim}\Lambda=k$, $\text{dim}\, E_{1}=\text{dim}\, E_{2}=n$ is developed. Here $A_{0}=A(0)$ is degenerated operator, $\mathit{dim}\mathit{Ker}A_{0}=1,$ $\mathit{Ker}A_{0}=\{\varphi\}$, $\mathit{Ker}\text{A}_{0}^{*}=\{\psi\}$ and the operator-function $A(\lambda)$ is supposed to be linear on $\lambda$.The aims of the article are the applications to degenerate differential equations of the form $[A_{0}+R(\cdot,x)]x'=Bx$.

Keywords: multiparameter operator-functions; the theory of Jordan chains; degenerated differential-algebraic equations.

UDC: 517.9



© Steklov Math. Inst. of RAS, 2024