Abstract:
The article considers natural formulations of the independent set problem, vertex and edge dominating set problems as integer linear programming problems. For every fixed $C$, authors prove polynomial-time solvability of both dominating set problems in a class of graphs, for which all minors of the vertex and edge adjacency matrices are at most $C$ in the absolute value. The paper also includes a similar result for the independent set problem and for a class of graphs, which is defined by bounding of absolute values of all matrix minors obtained by augmenting of transposed incidence matrices by all-ones vectors.
Keywords:boolean linear programming, independent set problem, dominating set problem, matrix minor, polynomial-time algorithm.