RUS  ENG
Full version
JOURNALS // Theoretical and Applied Mechanics // Archive

Theor. Appl. Mech., 2019 Volume 46, Issue 1, Pages 97–108 (Mi tam57)

This article is cited in 7 papers

Note on a ball rolling over a sphere: integrable Chaplygin system with an invariant measure without Chaplygin Hamiltonization

Božidar Jovanović

Mathematical Institute SANU, Belgrade, Serbia

Abstract: In this note we consider the nonholonomic problem of rolling without slipping and twisting of an $n$-dimensional balanced ball over a fixed sphere. This is a $SO(n)$–Chaplygin system with an invariant measure that reduces to the cotangent bundle $T^*S^{n-1}$. For the rigid body inertia operator $\mathbb I\omega=I\omega+\omega I$, $I=\operatorname{diag}(I_1,\dots,I_n)$ with a symmetry $I_1=I_2=\dots=I_{r} \ne I_{r+1}=I_{r+2}=\dots=I_n$, we prove that the reduced system is integrable, general trajectories are quasi-periodic, while for $r\ne 1,n-1$ the Chaplygin reducing multiplier method does not apply.

Keywords: nonholonomic Chaplygin systems, invariant measure, integrability.

MSC: 37J60, 37J15, 70E18

Received: 22.03.2019
Revised: 17.04.2019

Language: English

DOI: 10.2298/TAM190322003J



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025