RUS  ENG
Full version
JOURNALS // Theory of Stochastic Processes // Archive

Theory Stoch. Process., 2007 Volume 13(29), Issue 3, Pages 48–54 (Mi thsp228)

Local limit theorem for triangular array of random variables

Igor A. Korchinskya, Alexey M. Kulikb

a Kyiv 01033 Volodymyrska str., 64, Taras Shevchenko Kyiv National University
b Kiev 01601, Tereshchenkivska str., 3, Institute of Mathematics, Ukrainian National Academy of Sciences

Abstract: For a triangular array of random variables $\{X_{k,n}, k=1, \ldots, c_n; n\in{\mathbb N}\}$ such that, for every $n,$ the variables $X_{1,n},\ldots,X_{c_n,n}$ are independent and identically distributed, the local limit theorem for the variables $S_n = X_{1,n} + \ldots + X_{c_n,n}$ is established.

Keywords: Local limit theorem, canonical measure, infinitely divisible distribution.

MSC: 60F15

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025