RUS  ENG
Full version
JOURNALS // Theory of Stochastic Processes // Archive

Theory Stoch. Process., 2011 Volume 17(33), Issue 2, Pages 25–34 (Mi thsp50)

Stochastically Lipschitzian functions and limit theorems for functionals of shot noise processes

Andrii B. Ilienkoa, Josef G. Steinebachb

a Department of Mathematical Analysis and Probability Theory, National Technical University of Ukraine (KPI), Prospekt Peremogy 37, 03056 Kiev, Ukraine
b Mathematical Institute of the University of Cologne, Weyertal 86-90, 50931 Cologne, Germany

Abstract: Let $\theta$ be a short memory shot noise process. For wide classes of “stochastically Lipschitzian” (SL) and “stochastically locally Lipschitzian” (SLL) non-linear functions $K\colon{\mathbb R}\to{\mathbb R}$, we prove asymptotic normality of the normalized integrals $\Theta_K(T)=\int_0^TK(\theta(t))\,dt$ as $T\to\infty$. We also consider various examples of SL and SLL functions.

Keywords: Shot noise process, non-linear function, integrated process, central limit theorem.

MSC: 60G10, 60F05

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025