RUS  ENG
Full version
JOURNALS // Proceedings of the Institute of Mathematics of the NAS of Belarus // Archive

Tr. Inst. Mat., 2022 Volume 30, Number 1-2, Pages 84–98 (Mi timb336)

This article is cited in 2 papers

On the solvability and factorization of some $\pi$-solvable irreducible linear groups of primary degree. Part I

A. A. Yadchenko

Institute of Mathematics of the National Academy of Sciences of Belarus, Minsk

Abstract: The article begins a series of papers where for a set $\pi$ of odd primes $\pi$-solvable finite irreducible complex linear groups of degree $2|H|+1$ whose Hall $\pi$-subgroups are $TI$-subgroups and are not normal in groups. The goal of this series is to prove the solvability and determine the factorization of such groups. Proof of the theorem started. Preliminary results are obtained and some properties of minimal counterexample to the theorem are established.

UDC: 512.542

Received: 29.11.2022



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025