RUS  ENG
Full version
JOURNALS // Proceedings of the Institute of Mathematics of the NAS of Belarus // Archive

Tr. Inst. Mat., 2023 Volume 31, Number 1, Pages 58–69 (Mi timb362)

On conjugate rational trigonometric Fourier series and their approximation properties

N. Ju. Kazlouskaya, Y. A. Rovba

Yanka Kupala State University of Grodno

Abstract: The article considers conjugate rational trigonometric Fourier series. An integral representation of their partial sums and the Dini test for the convergence of the given series were obtained. The approximation of functions conjugate to $|\sin x|^s$, $s>0$ by partial sums of conjugate rational trigonometric Fourier series is investigated. An integral representation, uniform and point estimates for the above-mentioned approximation were obtained. On the base of the uniform estimate polynomial, a fixed number of geometrically different poles, and general cases were studied.

UDC: 517.518.45

Received: 15.02.2023



© Steklov Math. Inst. of RAS, 2025