RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2013 Volume 19, Number 4, Pages 167–174 (Mi timm1010)

This article is cited in 11 papers

Exceptional strongly regular graphs with eigenvalue 3

A. A. Makhnevab, D. V. Paduchikha

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Abstract: A strongly regular graph $\Gamma$ with eigenvalue $m-1$ is called exceptional if it does not belong to the following list: (1) the union of isolated $m$-cliques, (2) a pseudogeometric graph for $pG_t(t+m-1,t)$, (3) the completion to a pseudogeometric graph for $pG_{m}(s,m-1)$, (4) a graph in the half case with parameters $(4\mu+1,2\mu,\mu-1,\mu)$, $\sqrt{4\mu+1}=m-1$. We find parameters of exceptional strongly regular graphs with nonleading eigenvalue 3.

Keywords: strongly regular graph, eigenvalue of a graph.

UDC: 519.17

Received: 17.06.2013


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2014, 287, suppl. 1, 93–101

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025