RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2014 Volume 20, Number 1, Pages 17–31 (Mi timm1026)

This article is cited in 13 papers

Bernstein–Szegö inequality for fractional derivatives of trigonometric polynomials

V. V. Arestovab, P. Yu. Glazyrinaba

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b Institute of Mathematics and Computer Science, Ural Federal University

Abstract: On the set $\mathscr F_n$ of trigonometric polynomial of degree $n\ge1$ with complex coefficients, we consider the Szegö operator $D^\alpha_\theta$ defined by the relation $D^\alpha_\theta f_n(t)=\cos\theta D^\alpha f_n(t)-\sin\theta D^\alpha\widetilde f_n(t)$ for $\alpha,\theta\in\mathbb R$, $\alpha\ge0$; where $D^\alpha f_n$ and $D^\alpha\widetilde f_n$ are the Weyl fractional derivatives of (real) order $\alpha$ of the polynomial $f_n$ and its conjugate polynomial $\widetilde f_n$. In particular, we prove that, if $\alpha\ge n\ln2n$, then, for any $\theta\in\mathbb R$, the sharp inequality $\|\cos\theta D^\alpha f_n-\sin\theta D^\alpha\widetilde f_n\|_{L_p}\le n^\alpha\|f_n\|_{L_p}$ holds in the spaces $L_p$ for all $p\ge0$ on the set $\mathscr F_n$. For classical derivatives (of integer order $\alpha\ge1$), this inequality was obtained by Szegö (1928) in the uniform norm $(p=\infty)$ and by Zygmund (1931–1935) for $1\le p<\infty$. A. I. Kozko (1998) proved this inequality for fractional derivatives of (real) order $\alpha\ge1$ and $1\le p\le\infty$.

Keywords: trigonometric polynomial, Weyl fractional derivative, Bernstein inequality, Szegö inequality.

UDC: 517.518.86

Received: 16.09.2013


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, 288, suppl. 1, 13–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025