RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2014 Volume 20, Number 1, Pages 247–257 (Mi timm1047)

This article is cited in 4 papers

Approximation by Fourier sums and Kolmogorov widths for classes $\mathbf{MB}^\Omega_{p,\theta}$ of periodic functions of several variables

S. A. Stasyuk

Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev

Abstract: We obtain exact order estimates for approximations of mixed smoothness classes $\mathbf{MB}^\Omega_{p,\theta}$ by Fourier sums in the metric $L_q$ for $1<p<q<\infty$. The spectrum of approximation polynomials lies in the sets generated by level surfaces of the function $\Omega(t)/\prod_{j=1}^dt_j^{1/p-1/q}$. Under some matching conditions on the parameters $p,q$ and $\theta$, we obtain exact order estimates for Kolmogorov widths of the classes under consideration in the metric $L_q$.

Keywords: hyperbolic cross, Kolmogorov width, best approximation, mixed smoothness, Fourier sums.

UDC: 517.51

Received: 16.10.2013



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025