RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2014 Volume 20, Number 1, Pages 264–270 (Mi timm1049)

The rate of the smallest value of the weighted measure of the nonnegativity set for polynomials with zero mean value on a closed interval

K. S. Tikhanovtseva

Institute of Mathematics and Computer Science, Ural Federal University

Abstract: Let $\mathcal P_n(\alpha)$ be the set of algebraic polynomials $p_n$ of order $n$ with real coefficients and zero weighted mean value with ultraspherical weight $\varphi^{(\alpha)}(t)=(1-t^2)^\alpha$ on the interval $[-1,1]$: $\int_{-1}^1\varphi^{(\alpha)}(t)p_n(t)\,dx=0$. We study the problem on the smallest value $\mu_n=\inf\{m(p_n)\colon p_n\in\mathcal P_n(\alpha)\}$ of the weighted measure $m(p_n)=\int_{\mathcal X(p_n)}\varphi^{(\alpha)}(t)\,dt$ of the set where $p_n$ is nonnegative. The order of $\mu_n$ with respect to $n$ is found: it is proved that $\mu_n(\alpha)\asymp n^{-2(\alpha+1)}$ as $n\to\infty$.

Keywords: algebraic polynomials, polynomials with zero weighted mean value, ultraspherical weight.

UDC: 517.518.86

Received: 01.07.2013


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, 288, suppl. 1, 195–201

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025