RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2014 Volume 20, Number 1, Pages 305–321 (Mi timm1052)

This article is cited in 9 papers

On the smoothness of an approximated optimization problem for a Goursat–Darboux system on a varied domain

A. V. Chernovab

a N. I. Lobachevski State University of Nizhni Novgorod
b Nizhny Novgorod State Technical University

Abstract: We use an example of a controlled nonlinear Goursat–Darboux system to study a rather general approach to the approximate solution of optimal control problems associated with lumped and distributed parameter systems that are affine in control variables; the domain of independent variables can be fixed or varied. The main idea of this approach consists in the approximation of the original infinite-dimensional optimization problem by a smooth finite-dimensional mathematical programming problem of comparatively small dimension with the help of spline discontinuous interpolation of the desired control on a floating mesh. We establish the existence of partial derivatives for functions of the approximating problem and derive necessary formulas.

Keywords: approximate solving of optimal control problems, Goursat–Darboux system, spline interpolation of the control, floating mesh, derivatives formulas.

UDC: 517.957+517.988+517.977.56

Received: 16.05.2013



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024