RUS  ENG
Full version
JOURNALS // Trudy Instituta Matematiki i Mekhaniki UrO RAN // Archive

Trudy Inst. Mat. i Mekh. UrO RAN, 2014 Volume 20, Number 2, Pages 210–222 (Mi timm1070)

This article is cited in 4 papers

Lower bounds for the number of hyperplanes separating two finite sets of points

K. S. Kobylkinab

a Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
b B. N. Yeltsin Ural Federal University

Abstract: We consider the $NP$-hard polyhedral separability problem for two subsets $A$ and $B$ of points in general position in $\mathbb R^d$ with the fewest number of hyperplanes in the sense of boolean functions from a given class $\Sigma$. Both deterministic and probabilistic lower bounds are obtained for this number for two different classes of functions $\Sigma$.

Keywords: $k$-polyhedral separability, boolean function, monochromatic island, combinatorial discrepancy.

UDC: 517.977

Received: 06.03.2014


 English version:
Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2015, 289, suppl. 1, 126–138

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025